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Abstract:

Over the last few decades, understanding of the mecha-

nism of cellular development has increased tremen-

dously. The knowledge of the potential of stem/pre-

cursor cells in tissue engineering and cell therapy has

gained the popularity. In case of diabetes, the availabil-

ity of the source of stem cells and the efficacy of their

isolation techniques for maximum yield of viable cells

to expand is an important issue which needs attention.

Attempts to make beta cells from mouse embryonic

stem cells (ES) and adult stem cells have been frus-

trating in part because too much has been expected

too soon. The problem with ES cells are that it is not

known whether these cells are truly similar to normal

beta cells or not and ethical issues surrounding them.

ES cells is a major concern. Current claims about dif-

ferentiation / transdifferentiation of adult stem cells to

insulin producing cells has been demonstrated by many

groups. These adult stem cells are of enormous inter-

est because of their general accessibility and lack of

ethical issues. Also, adult stem cells are non immuno-

compatible unless isolated from the same patient

whereas ethical and scientific issues surrounding em-

bryonic and fetal stem cells hinder their widespread

implementation. Therefore, much attention is now fo-

cused on alternative sources of adult/postnatal stem

cells.
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Introduction:

Diabetes mellitus (DM) is now taking its place as one

of the main threats to human health in the 21st century

[1, 2]. Over the last century, human lifestyle and

behaviour changes have resulted in a dramatic increase

in the incidence of diabetes worldwide. The past two

decades have seen an explosive (almost 46%) in-

crease in the number of people diagnosed with dia-

betes worldwide, [3-6] with more than 40% from

India only [7]. The global prevalence of diabetes is

shifting significantly from the developed countries to

the developing countries [2].

DM is currently a chronic disease without a cure;

however, type 2 diabetes can be managed with a

combination of dietary treatment, medication, exer-

cise, and insulin supplementation. In case of Type 1

DM, a sustained C-peptide production and success-

ful insulin independence continuously for five years

after pancreatic islet transplantation  has showed a

ray of hope [7]. Since then, the islet transplantation is

increasingly being used as a cell replacement therapy

for type-1 diabetes [8]. However, the need for on-

going immunosuppressive therapy and the scarcity of

donor islets have precluded the widespread adop-

tion of islet transplantation. Although

xenotransplantation (for example, porcine islets) could

provide a virtually inexhaustible source of islets for

transplantation [9, 10] the concern about infection by

animal retroviruses and certain ethical issues limit the

use of this potential source. Hence, there is a need to

look for new sources of islet tissues to meet the po-

tential demand for islet cell transplantation.

Stem cell Therapy as a source for islet neogenesis

A stem cell is defined by their ability to self-renew

indefinitely by asymmetric cell division with a poten-

tial to differentiate into one or more specialized cell-

types [11-13]. Stem cells of embryonic or adult ori-

gin have become the favourable and attractive target
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of research in the biomedical sciences as they offer

solutions to overcome the technical difficulties asso-

ciated with conventional cell therapy by their ability

to proliferate, replicate in a controlled laboratory con-

ditions and to differentiate into a wide range of tissue

types.

In developing a potential therapy for patients with

diabetes, the stem cell system needs to meet several

criteria. For diabetes therapy, it is not clear whether

it will be desirable to produce only â-cells or whether

other types of pancreatic islet cells (PP, α, δ cells)

and acinar cells are also essential.  Recent trends in-

dicate that isolated β cells cultured in the absence of

the other islet cells (α,δ, PP) are less responsive to

changes in glucose concentration than intact islet clus-

ters made up of all islet cell types. Perhaps the most

important issue is the choice of the appropriate

sources of stem cells.

Embryonic Stem Cells:

October 2013, marks the 15th anniversary of the first

reported derivation of human Embryonic Stem (ES)

cells [14]. The report was met with much acclaim as

it was quickly recognized that the ability of these pluri-

potent stem cells derived from the inner mass of the

mammalian blastocyst to differentiate indefinitely into

all cell types/germ layers of the human body; could

provide a source of cells both in vivo and in vitro

for replacing tissues lost to injury and disease - the

ultimate goal of regenerative medicine.

Regardless of the species, undifferentiated ES cells

express several cell surface markers; these include

stage specific embryonic antigen (SSEA), SSEA1 in

mouse and SSEA-3 and SSEA-4 in human, as well

as tumor recognition antigens TRA-1-60 and TRA-

1-81 in human [15-17]. In the uncommitted state both

mouse and human ES cells express alkaline phos-

phatase, the POU-domain transcription factor Oct-

4, and telomerase16. When removed from the spe-

cific culture conditions required to maintain an undif-

ferentiated state, ES cell lines from both species can

spontaneously be  differentiated in vitro to form a

variety of cell types derived from each of the three

germ layers. Even without the addition of any exog-

enous growth factors, ES cells allowed to differenti-

ate will spontaneously form neurons [18, 19],

cardiomyocytes [20, 21], muscle cells [22],

hematopoeitic cells [23] pancreatic precursor cells

[24, 25] and many other cell types [26-29]. Although

these procedures provide a starting point for pro-

ducing specific cells for possible applications, whether

in regenerative medicine, or as tools for drug discov-

ery or as disease models, little is understood about

the underlying mechanisms. Even if, limited success

has been achieved by manipulating culture conditions

to drive differentiation of human ES cells along par-

ticular lineages, there is little evidence to support the

view that such conditions specifically direct differen-

tiation rather than select for propagation or survival

of cells generated by spontaneous processes. A num-

ber of chemical agents and growth factors such as

retinoic acid or Bone morphogenetic proteins (BMP)

are well known to have physiological roles in embry-

onic development and have also been used to pro-

mote differentiation of ES cells in culture [30]. How-

ever, even in these cases, there is a tendency for dif-

ferentiation to follow broad lineages such as ecto-

dermal or mesodermal; the cell types generated also

tend to be heterogeneous [31].

Human embryonic stem cell (hESC)-based cell re-

placement therapies represents an attractive target

for type 1 diabetes [32]. Recently, it has been re-

ported that ES cells from mouse [33-40], monkey

[41] and human [42-44] were able to differentiate

into insulin positive cells. However, to date, studies

that reported the generation of insulin-positive cells

from ES cells, through cellular genetic manipulation

[40,45] or by utilization of specific culture conditions

[39,46] did not show a significant content of insulin

or a physiological regulation of insulin secretion. Ac-

tually, insulin secretion in differentiated ES cells never

exceeded 1.6% of the amount that a â-cell typically
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secretes. This is about the same production level

found in non- β insulin producing cells, such as fetal

liver cells or certain neuronal cells [47, 48].

Identification of a pancreatic progenitor cells would

be an important step to isolate large numbers of cells

that could be readily differentiated into islets or β-

cells.  Based on the expression of many neuronal cell

markers, a neuroectodermal origin of pancreatic en-

docrine cells has been hypothesized for many years.

It was suggested that nestin, the intermediate filament

protein which is expressed in neuronal precursors

might be a marker of islet progenitor cells [49]. Sev-

eral groups have used protocols designed to enrich

for neural precursors, characterized by expression

of nestin, in attempts to coax ES cells to adopt a

pancreatic islet fate [37, 50]. However, Lumelsky

and coworkers [37] observed that using a differen-

tiation protocol for neuronal progenitor cells, the dif-

ferentiation of nestin-positive ES cells into β-like cells,

had a limited effect. Only very few cells were insulin-

positive and the resulting cell aggregates did not ex-

press the Pdx-1 (pancreatic development homeobox

1, a homodomain protein absolutely required for pan-

creatic development in both human and mice) and

the majority of cells exhibited a neuronal phenotype.

There is some controversy about the use of nestin as

a progenitor marker and its significance in islet neo-

genesis. Some authors considered nestin as a neu-

roepithelial precursor marker (neural cell adhesion

molecule), which is also essential in multipotential

progenitor cells of pancreas, present both in rat and

in human pancreatic islets (called nestin-positive is-

let-derived progenitors) [50, 51]. Others have re-

ported that nestin only marks a population of mesen-

chymal or endothelial cell types, thereby excluding

role of nestin in islet cell development [52, 53]. Re-

cently, it has been demonstrated that the nestin posi-

tive cells in the pancreas of mice of different ages is

immunolocalized  with reference to insulin and gluca-

gon positive cells [54].

The proliferative capacity of ES cells is attractive but

their applications are limited due to risk of teratocar-

cinoma formation [35, 55]. The major concern with

ES cells is considerable ethical issues regarding the

use of human ES cells followed by their pluripotency

and plasticity, to create a mixture of many different

cells failing to produce the homologues population of

fully differentiated β-cells required for transplanta-

tion therapy [25]. Moreover, considering that ES cells

are by definition immortal, their poor survival when

differentiated was unexpected. Even though EC

would seem to constitute an ideal source for cell re-

placement therapies for many human diseases, re-

cent events have shown that some spectacular re-

sults in the field of ES cell research have to be reana-

lyzed very carefully [56].

The great advantage of ES cells over other stem cells

is that they can generate many potentially useful cell

types - but that is also their disadvantage. To use ES

cells effectively in regenerative medicine, or in other

applications, such as disease modeling or drug dis-

covery, applications that are often over looked in

popular discussion, is that it is essential to understand

how to control their differentiation. This is necessary

if one is to expand cultures of the undifferentiated

cells to a usable scale, free of potential pathogens. It

is also necessary if one is to produce specified cell

types, free of other unwanted cells, and if the genetic

fidelity of the cells is to be preserved, a factor that

was not immediately apparent when these cells were

first derived. These issues present substantial chal-

lenges [31]. Nevertheless, in diabetes research, hu-

man ES cells may help to decode some crucial steps

in vitro, since almost all the data available on pan-

creas development were obtained from animal mod-

els. To activate the differentiation programmes, ES

cells are forced to aggregate into embryonic bodies

(EBs) by culturing in suspension and in the absence

of leukemia inhibitory factor (LIF). These unique

properties make ES cells of great interest as a source

to obtain insulin producing cells for diabetes treat-

ment [57].
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Recent success in generating insulin-secreting islet-

like cells from human embryonic stem (ES) cells, in

combination with the success in deriving human ES

cell - like induced pluripotent stem (iPS) cells from

human fibroblasts by defined factors, have raised the

possibility that patient - specific insulin - secreting is-

let-like cells might be derived from somatic cells

through cell fate reprogramming using defined factors

[58]. Although the precise relationship of iPS and ES

cells remains to be explored in detail, the advent of

iPS cell technology circumvents the ethical, legal and

logistical problems associated with the need for hu-

man embryos to derive ES cell lines, and has started

a democratization process that should see a substan-

tial expansion in the study of pluripotent cell biology.

With all these results in mind, insulin producing, C-

peptide and glucagon positive islet-like clusters (ILCs)

from the iPS cells were derived from human skin cells

by retroviral expression of Oct4, SOX2, c-MYC,

and KLF4 under feeder-free conditions [59].  The

major hurdles that must be overcome to enable the

broad clinical translation of these advances include

teratoma formation by ES and iPS cells, and the need

for immunosuppressive drugs. Thus, the creation of

human - animal hybrid embryos by iPS - proposed

as a way to generate embryonic stem cells without

relying on scarce human eggs - has met with legisla-

tive hurdles and public outcry. But a very recent re-

port [60] suggests that the approach has another, more

fundamental problem: it may simply not work - as

these hybrid embryos fail to grow beyond 16 cells.

Hence, it is not yet sure whether iPS cells lives up to

all the great hopes given to them. The best strategy

would be ‘wait and watch’.

Adult Stem Cells:

Several adult tissues, including blood, epidermis, liver,

enterocytes and spermatogonia are replenished

throughout the life. This observation of the regenera-

tive potential of adult tissue led to the concept of adult

stem cells. Adult stem cells are rare cells with low

proliferation capacity, which according to present

hypotheses reside in stem cell niches and give rise to

a transient amplifying cell pool that differentiates,

thereby regenerating the respective tissues [61] ex-

cept germ layer and further classified as hematopoi-

etic stem cells [HSC] and mesenchymal stem cells

(MSC).

Although MSCs were originally isolated from bone

marrow [62], recent years have witnessed an explo-

sion in the number of adult stem cell populations iso-

lated and characterized. Every tissue or organ, from

adipose tissue [63, 64], placenta [65, 66], amniotic

fluid [67], umbilical cord blood [68, 69] etc. exhibits

stem cell population. Some studies have suggested

that there may be a greater degree of plasticity, per-

haps even pluripotency, associated with adult stem

cells than was previously believed. The multilineage

differentiation potential of MSCs derived from vari-

ety of different species has been extensively studied

in vitro since their first discovery in 1960 [70]. An

excitement ensued when, in 1998, Ferrari et al. [71]

showed transplantation of genetically marked bone

marrow into immunodeficient mice migrated into ar-

eas of induced muscle degeneration, undergo myo-

genic differentiation, and participated in the regen-

eration of the damaged fibers.  Subsequently, numer-

ous publications [72, 73,74] have described various

events, in which adult stem cells from one organ give

rise to cell type characteristics of different organ.

The capacity to differentiate into multiple mesenchy-

mal lineages including cartilage [75, 76], bone [77-

78], and adipose tissue [79, 80] is being used as a

functional criterion to define MSCs. This ability has

rendered MSC an ideal candidate cell source for clini-

cal tissue regeneration strategies, including the aug-

mentation and local repair and regeneration of spe-

cific lineage. Recent studies indicated the identifica-

tion of pluripotent cells that not only differentiate into

cells of mesoderm lineage, but also into endoderm

and neuroectoderm lineages, including neurons [81],

hepatocytes [82], and endothelia [83].
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Individual colonies derived from single MSC precur-

sors have also been reported to be heterogeneous in

terms of their multilineage differentiation potential. Only

one third of adherent bone marrow derived MSC

clones are pluripotent [84]. Furthermore,

nonimortalized cell clones examined by Muraglia et

al. [85] in 2000 demonstrated that 30% of the in vitro

derived MSC clones exhibited a tri-lineage (osteo-

genic/chondrogenic/adipogenic) differentiation poten-

tial, while the reminder displayed a bi-lineage (osteo-

genic/chondrogenic) or uni-lineage (osteogenic).

These observations are consistent with other in vitro

studies using conditional immortalized clones [86-88].

It has also been observed that only 58.8% of the single

colony derived clones had the ability to form bone

within Hydroxyapatite-tricalcium phosphate ceramic

scaffolds post implantation in immunodeficient mice

[89]. All these results indicate heterogeneous nature

of clonally derived MSCs with respect to their devel-

opmental potential.

At present, there is no specific marker or combina-

tion of markers have been identified that specifically

defined MSCs [90, 91]. Phenotypically, ex vivo ex-

panded MSCs express a number of non-specific

markers, including CD29, CD44, CD73, CD90,

CD105, CD166 [84, 92]. Despite this controversy

of what defines a mesenchymal stem cell, there is gen-

eral agreement that MSCs lack typical hematopoi-

etic antigens, namely CD14, CD34 and CD45 [84].

With specific regards to pancreatic lineages there has

been a report of differentiation/ transdifferentiation by

Ianus and colleagues [93] who studied in vivo dif-

ferentiation of adult bone marrow derived cells into

pancreatic endocrine cells. Their results suggested that

a population of cells within the bone marrow has the

capacity to transdifferentiate into cells that can popu-

late and perhaps function within, the endocrine pan-

creas. One study using streptozotocin (STZ) – in-

duced pancreas damage demonstrated that pancre-

atic cell proliferation was induced after bone marrow

transplantation [94]. The stem cells from bone mar-

row are capable of producing a whole spectrum of

cell types; highlighting the opportunity to manipulate

these cells for therapeutic use as they have been shown

to cross the lineage boundaries [95]. It has been

shown that the human bone marrow derived mesen-

chymal stem cells could be induced to differentiate

into functional insulin producing cells using Pdx-1,

delivered by recombinant adenovirus. More recent

reports suggest that bone marrow stem cells reversed

experimental diabetes in vivo by enhancing the re-

generation and survival of endogenous β-cells rather

than repopulating the islets with trans-differentiated

β-cells [96,97]. Several in vitro studies have dem-

onstrated that rodent bone marrow stem cells can

adopt an insulin-expressing phenotype [98], and driv-

ing the phenotype of human bone marrow stem cells

by the forced expression of β-cells transcription fac-

tors generated cells capable of glucose responsive

insulin secretion [99,100]. Banerjee and colleagues

have demonstrated reversal of experimental diabetes

in STZ diabetic mouse model by multiple injections

of unfractionated bone marrow leading to induction

of pancreatic regeneration, which is highly promising

[101], although the mechanism is not suggested. These

studies point towards futuristic therapeutic approach

of auto transplantation of bone marrow to cure dia-

betes.

Apart from bone marrow the mature liver has been

shown to serve as a potential source of tissue for gen-

erating functional endocrine pancreas. This may al-

low the diabetic patient to be the donor of his or her

own therapeutic tissue; thus alleviating both the needs

for allo-transplantation and the subsequent immune

suppression [102]. There have been sporadic reports

that progenitor/stem cells from other tissues can be

induced to differentiate into insulin expressing cells,

including cells localized to intestinal epithelium, der-

mis, spleen, salivary gland and blood monocytes, en-

dometrium / menstrual blood [103]. These studies

have not always proved to be reproducible, and have

been reviewed recently [104-106]. Thus, with the
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ability to differentiate into multiple lineages

(multipotent) and immunosuppressive effects, adult

stem cells became an attractive alternative to human

ES cells in regenerative medicine and cell-based

therapy against various human diseases including

type 1 diabetes [107].  In particular, adult stem cells

have many attractive features as a source of

functional transplantable cellular material when

compared to ES cells.

Fetal/extra-embryonic/post-natal stem cells:

Fetal stem cells, comprising of the final broad stem

cell class, have a comparatively recent history. They

can be isolated from two distinct sources, the fetus

proper and the supportive extra-embryonic structures.

Stem cells derived from the extra-embryonic sources

are particularly interesting due to their potential clini-

cal utility. Over the past decades fetal stem cells have

been isolated from multiple extra-embryonic tissues,

reminiscent of gradual broadening of stem cell sources

seen in the adult. Amniotic fluid, amnion, umbilical

cord blood, Wharton’s jelly and placenta have all

generated putative stem cells. These tissues, collec-

tively also known as the afterbirth (after the delivery

of foetus, placenta begins a physiological separation

for spontaneous expulsion afterwards along with all

umbilical cord, amnion etc. therefore, called the af-

terbirth) are routinely discarded at parturition as a

biological waste. However, this situation may change

in the near future, as a growing number of reports

demonstrated greater potential of  these tissues as

‘store house’ of stem cells which makes it a valuable

alternative stem cell source with fewer concerns in

terms of ethical controversy and moral issues [108]

of the resident stem cell populations.

The first isolated fetal stem cells were hematopoietic,

derived from human umbilical cord blood. The iso-

lated cells were capable of long-term self-renewal and

differentiation to multiple hematopoietic lineages [109,

110]. Clinically, cord blood stem cells were success-

fully employed in a bone marrow transplant in 1988

[111]. Stem cells from extra-embryonic tissue ex-

pressed a number of mesenchymal cell surface mark-

ers, including CD90 and CD105. Subsequent work

demonstrated the expression of Oct4 within a subset

of most of the extra-embryonic stem cells. This is

important, as Oct4 expression is associated with pluri-

potent cells such as embryonic germ cells and ES cells

[112-114]. This observation keeps extra- embryonic

stem cells poised to join embryonic and adult stem

cells. Following in vitro expansion, the isolated cells

were capable of differentiating in vitro into

chondrocytes, adipocytes and osteocytes. In addi-

tion to tri-lineage differentiation, stem cells derived

from umbilical cord [115,116], cord blood [117-119],

placenta [66,120], amniotic membrane [121,122]

have shown potential for differentiation into insulin

producing β-cells and have been considered as sur-

rogate β-cells source for islet transplantation. Most

importantly, an emerging body of data indicates that

MSCs possess immunomodulatory properties [123-

126] & may play specific roles as immunomodulators

in maintenance of peripheral tolerance, transplanta-

tion tolerance, autoimmunity, tumor evasion, as well

as fetal-maternal tolerance. These observations have

further raised clinical interest in adult and its counter-

part fetal MSCs.

Recent advance in adult/fetal stem cell technologies

and basic biology has accelerated therapeutic oppor-

tunities aimed at eventual clinical applications. First,

the extracorporeal nature of these stem cell sources

facilitates isolation, eliminating patient risk that attends

other adult stem cell isolation. Most significantly, the

comparatively large volume of extra-embryonic tis-

sues and ease of physical manipulation theoretically

increases the number of stem cells that can be iso-

lated. Second, ethical questions surrounding the use

of human embryonic stem cells are essentially absent

from the discussion of adult stem cells. Third, because

they can be isolated from the prospective patient, they

would be genetically matched, thus eliminating the need

for immunosuppressive therapies. Fourth, the puta-
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tive ability of extra embryonic stem cells to differen-

tiate into cells from multitude of lineage suggests their

use in treating a variety of diseases. Stem cells from

extra-embryonic tissues represent an emerging area

of research that bears tremendous potential with broad

application to many different areas including normal

and pathological development, assisted reproductive

technology procedures and regenerative medicine

[127].

The extra-embryonic/adult stem cells have opened

up the possibility of ‘fixing’ a particular genotype (ei-

ther normal or diseased) in pluripotent stem cells. Iso-

lation from tissues normally discarded at birth facili-
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tates easy harvest and overcomes ethical concerns.

The cells isolated from these tissues grow well in cul-

ture, appear capable of differentiation to multiple cell

types and may be less likely to be rejected following

transplantation. All these studies have prompted re-

searchers to examine the stem cell potential of the

biological waste tissues of human origin such as um-

bilical cord, placenta, amnion and endometrium and

to test their ability to differentiate into glucose respon-

sive insulin producing islet like clusters for possible

cell replacement therapy in diabetes as well as to cre-

ate an islet model for in vitro studies.
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